primary school Archives - Raspberry Pi Foundation https://www.raspberrypi.org/blog/tag/primary-school/ Teach, learn and make with Raspberry Pi Wed, 31 May 2023 15:33:31 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://www.raspberrypi.org/app/uploads/2020/06/cropped-raspberrry_pi_logo-100x100.png primary school Archives - Raspberry Pi Foundation https://www.raspberrypi.org/blog/tag/primary-school/ 32 32 Hello World #21 out now: Focus on primary computing education https://www.raspberrypi.org/blog/hello-world-21-primary-computing-education/ https://www.raspberrypi.org/blog/hello-world-21-primary-computing-education/#respond Tue, 30 May 2023 09:21:07 +0000 https://www.raspberrypi.org/?p=84018 How do we best prepare young children for a world filled with digital technology? This is the question the writers in our newest issue of Hello World respond to with inspiration and ideas for computing education in primary school. It is vital that young children gain good digital literacy skills and understanding of computing concepts,…

The post Hello World #21 out now: Focus on primary computing education appeared first on Raspberry Pi Foundation.

]]>
How do we best prepare young children for a world filled with digital technology? This is the question the writers in our newest issue of Hello World respond to with inspiration and ideas for computing education in primary school.

Cover of Hello World issue 21.

It is vital that young children gain good digital literacy skills and understanding of computing concepts, which they can then build on as they grow up. Digital technology is here to stay, and as Sethi De Clercq points out in his article, we need to prepare our youngest learners for circumstances and jobs that don’t yet exist.

Primary computing education: Inspiration and ideas

Issue 21 of Hello World covers a big range of topics in the theme of primary computing education, including:

  • Cross-curricular project ideas to keep young learners engaged
  • Perfecting typing skills in the primary school classroom
  • Using picture books to introduce programming concepts to children
  • Toolkits for new and experienced computing primary teachers, by Neil Rickus and Catherine Archer
  • Explorations of different approaches to improving diversity in computing and instilling a sense of belonging from the very start of a child’s educational journey, by Chris Lovell and Peter Marshman

The issue also has useful news and updates about our work: we share insights from our primary-specialist learning managers, tell you a bit about the research presented at our ongoing primary education seminar series, and include some relevant lesson plans from The Computing Curriculum.

A child at a laptop in a classroom in rural Kenya.

As always, you’ll find many other articles to support and inspire you in your computing teaching in this new issue. Topics include programming with dyslexia, exploring filter bubbles with your learners to teach them about data science, and using metaphors, similes, and analogies to help your learners understand abstract concepts.

What do you think?

This issue of Hello World focusses on primary computing education because readers like you told us in the annual readers’ survey that they’d like more articles for primary teachers.

We love to hear your ideas about what we can do to continue making Hello World interesting and relevant for you. So please get in touch on Twitter with your thoughts and suggestions.

The post Hello World #21 out now: Focus on primary computing education appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/hello-world-21-primary-computing-education/feed/ 0
Preparing young children for a digital world | Hello World #21 https://www.raspberrypi.org/blog/preparing-young-children-digital-world-hello-world-21/ https://www.raspberrypi.org/blog/preparing-young-children-digital-world-hello-world-21/#respond Tue, 23 May 2023 09:09:26 +0000 https://www.raspberrypi.org/?p=83940 How do we teach our youngest learners digital and computing skills? Hello World‘s issue 21 will focus on this question and all things primary school computing education. We’re excited to share this new issue with you on Tuesday 30 May. Today we’re giving you a taste by sharing an article from it, written by our…

The post Preparing young children for a digital world | Hello World #21 appeared first on Raspberry Pi Foundation.

]]>
How do we teach our youngest learners digital and computing skills? Hello World‘s issue 21 will focus on this question and all things primary school computing education. We’re excited to share this new issue with you on Tuesday 30 May. Today we’re giving you a taste by sharing an article from it, written by our own Sway Grantham.

Cover of Hello World issue 21.

How are you preparing young children for a world filled with digital technology? Technology use of our youngest learners is a hotly debated topic. From governments to parents and from learning outcomes to screen-time rules, everyone has an opinion on the ‘right’ approach. Meanwhile, many young children encounter digital technology as a part of their world at home. For example in the UK, 87 percent of 3- to 4-year-olds and 93 percent of 5- to 7-year-olds went online at home in 2023. Schools should be no different.

A girl doing digital making on a tablet.

As educators, we have a responsibility to prepare learners for life in a digital world. We want them to understand its uses, to be aware of its risks, and to have access to the wide range of experiences unavailable without it. And we especially need to consider the children who do not encounter technology at home. Education should be a great equaliser, so we need to ensure all our youngest learners have access to the skills they need to realise their full potential.

Exploring technology and the world

A major aspect of early-years or kindergarten education is about learners sharing their world with each other and discovering that everyone has different experiences and does things in their own way. Using digital technology is no different.

Allowing learners to share their experiences of using digital technology both accepts the central role of technology in our lives today and also introduces them to its broader uses in helping people to learn, talk to others, have fun, and do work. At home, many young learners may use technology to do just one of these things. Expanding their use of technology can encourage them to explore a wider range of skills and to see technology differently.

A girl shows off a robot she has built.

In their classroom environment, these explorations can first take place as part of the roleplay area of a classroom, where learners can use toys to show how they have seen people use technology. It may seem counterintuitive that play-based use of non-digital toys can contribute to reducing the digital divide, but if you don’t know what technology can do, how can you go about learning to use it? There is also a range of digital roleplay apps (such as the Toca Boca apps) that allow learners to recreate their experiences of real-world situations, such as visiting the hospital, a hair salon, or an office. Such apps are great tools for extending roleplay areas beyond the resources you already have.

Another aspect of a child’s learning that technology can facilitate is their understanding of the world beyond their local community. Technology allows learners to explore the wider world and follow their interests in ways that are otherwise largely inaccessible. For example:

  • Using virtual reality apps, such as Expeditions Pro, which lets learners explore Antarctica or even the bottom of the ocean
  • Using augmented reality apps, such as Octagon Studio’s 4D+ cards, which make sea creatures and other animals pop out of learners’ screens
  • Doing a joint project with a class of children in another country, where learners blog or share ‘email’ with each other

Each of these opportunities gives children a richer understanding of the world while they use technology in meaningful ways.

Technology as a learning tool

Beyond helping children to better understand our world, technology offers opportunities to be expressive and imaginative. For example, alongside your classroom art activities, how about using an app like Draw & Tell, which helps learners draw pictures and then record themselves explaining what they are drawing? Or what about using filters on photographs to create artistic portraits of themselves or their favourite toys? Digital technology should be part of the range of tools learners can access for creative play and expression, particularly where it offers opportunities that analogue tools don’t.

Young learners at computers in a classroom.

Using technology is also invaluable for learners who struggle with communication and language skills. When speaking is something you find challenging, it can often be intimidating to talk to others who speak much more confidently. But speaking to a tablet? A tablet only speaks as well as you do. Apps to record sounds and listen back to them are a helpful way for young children to learn about how clear their speech is and practise speech exercises. ChatterPix Kids is a great tool for this. It lets learners take a photo of an object, e.g. their favourite soft toy, and record themselves talking about it. When they play back the recording, the app makes it look like the toy is saying their words. This is a very engaging way for young learners to practise communicating.

Technology is part of young people’s world

No matter how we feel about the role of technology in the lives of young people, it is a part of their world. We need to ensure we are giving all learners opportunities to develop digital skills and understand the role of technology, including how people can use it for social good.

A woman and child follow instructions to build a digital making project at South London Raspberry Jam.

This is not just about preparing them for their computing education (although that’s definitely a bonus!) or about online safety (although this is vital — see my articles in Hello World issue 15 and issue 19 for more about the topic). It’s about their right to be active citizens in the digital world.

So I ask again: how are you preparing young children for a digital world?

Subscribe to the Hello World digital edition for free

The first experiences children have with learning about computing and digital technologies are formative. That’s why primary computing education should be of interest to all educators, no matter what the age of your learners is. This issue covers for example:

And there’s much more besides. So don’t miss out on this upcoming issue of Hello World — subscribe for free today to receive every PDF edition in your inbox on the day of publication.

The post Preparing young children for a digital world | Hello World #21 appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/preparing-young-children-digital-world-hello-world-21/feed/ 0
Introducing data science concepts and skills to primary school learners https://www.raspberrypi.org/blog/data-science-data-literacy-primary-school-scotland/ https://www.raspberrypi.org/blog/data-science-data-literacy-primary-school-scotland/#respond Thu, 18 May 2023 11:31:01 +0000 https://www.raspberrypi.org/?p=83906 Every day, most of us both consume and create data. For example, we interpret data from weather forecasts to predict our chances of a good weather for a special occasion, and we create data as our carbon footprint leaves a trail of energy consumption information behind us. Data is important in our lives, and countries…

The post Introducing data science concepts and skills to primary school learners appeared first on Raspberry Pi Foundation.

]]>
Every day, most of us both consume and create data. For example, we interpret data from weather forecasts to predict our chances of a good weather for a special occasion, and we create data as our carbon footprint leaves a trail of energy consumption information behind us. Data is important in our lives, and countries around the world are expanding their school curricula to teach the knowledge and skills required to work with data, including at primary (K–5) level.

In our most recent research seminar, attendees heard about a research-based initiative called Data Education in Schools. The speakers, Kate Farrell and Professor Judy Robertson from the University of Edinburgh, Scotland, shared how this project aims to empower learners to develop data literacy skills and succeed in a data-driven world.

“Data literacy is the ability to ask questions, collect, analyse, interpret and communicate stories about data.”

– Kate Farrell & Prof. Judy Robertson

Being a data citizen

Scotland’s national curriculum does not explicitly mention data literacy, but the topic is embedded in many subjects such as Maths, English, Technologies, and Social Studies. Teachers in Scotland, particularly in primary schools, have the flexibility to deliver learning in an interdisciplinary way through project-based learning. Therefore, the team behind Data Education in Schools developed a set of cross-curricular data literacy projects. Educators and education policy makers in other countries who are looking to integrate computing topics with other subjects may also be interested in this approach.

Becoming a data citizen involves finding meaning in data, controlling your personal data trail, being a critical consumer of data, and taking action based on data.
Data citizens have skills they need to thrive in a world shaped by digital technology.

The Data Education in Schools projects are aimed not just at giving learners skills they may need for future jobs, but also at equipping them as data citizens in today’s world. A data citizen can think critically, interpret data, and share insights with others to effect change.

Kate and Judy shared an example of data citizenship from a project they had worked on with a primary school. The learners gathered data about how much plastic waste was being generated in their canteen. They created a data visualisation in the form of a giant graph of types of rubbish on the canteen floor and presented this to their local council.

A child arranges objects to visualise data.
Sorting food waste from lunch by type of material

As a result, the council made changes that reduced the amount of plastic used in the canteen. This shows how data citizens are able to communicate insights from data to influence decisions.

A cycle for data literacy projects

Across its projects, the Data Education in Schools initiative uses a problem-solving cycle called the PPDAC cycle. This cycle is a useful tool for creating educational resources and for teaching, as you can use it to structure resources, and to concentrate on areas to develop learner skills.

The PPDAC project cycle.
The PPDAC data problem-solving cycle

The five stages of the cycle are: 

  1. Problem: Identifying the problem or question to be answered
  2. Plan: Deciding what data to collect or use to answer the question
  3. Data: Collecting the data and storing it securely
  4. Analysis: Preparing, modelling, and visualising the data, e.g. in a graph or pictogram
  5. Conclusion: Reviewing what has been learned about the problem and communicating this with others 

Smaller data literacy projects may focus on one or two stages within the cycle so learners can develop specific skills or build on previous learning. A large project usually includes all five stages, and sometimes involves moving backwards — for example, to refine the problem — as well as forwards.

Data literacy for primary school learners

At primary school, the aim of data literacy projects is to give learners an intuitive grasp of what data looks like and how to make sense of graphs and tables. Our speakers gave some great examples of playful approaches to data. This can be helpful because younger learners may benefit from working with tangible objects, e.g. LEGO bricks, which can be sorted by their characteristics. Kate and Judy told us about one learner who collected data about their clothes and drew the results in the form of clothes on a washing line — a great example of how tangible objects also inspire young people’s creativity.

In a computing classroom, a girl laughs at what she sees on the screen.

As learners get older, they can begin to work with digital data, including data they collect themselves using physical computing devices such as micro:bit microcontrollers or Raspberry Pi computers.

You can access the seminar slides here.

Free resources for primary (and secondary) schools

For many attendees, one of the highlights of the seminar was seeing the range of high-quality teaching resources for learners aged 3–18 that are part of the Data Education in Schools project. These include: 

  • Data 101 videos: A set of 11 videos to help primary and secondary teachers understand data literacy better.
  • Data literacy live lessons: Data-related activities presented through live video.
  • Lesson resources: Lots of projects to develop learners’ data literacy skills. These are mapped to the Scottish primary and secondary curriculum, but can be adapted for use in other countries too.

More resources are due to be published later in 2023, including a set of prompt cards to guide learners through the PPDAC cycle, a handbook for teachers to support the teaching of data literacy, and a set of virtual data-themed escape rooms.  

You may also be interested in the units of work on data literacy skills that are part of The Computing Curriculum, our complete set of classroom resources to teach computing to 5- to 16-year-olds.

Join our next seminar on primary computing education

At our next seminar we welcome Aim Unahalekhaka from Tufts University, USA, who will share research about a rubric to evaluate young learners’ ScratchJr projects. If you have a tablet with ScratchJr installed, make sure to have it available to try out some activities. The seminar will take place online on Tuesday 6 June at 17.00 UK time, sign up now to not miss out.

To find out more about connecting research to practice for primary computing education, you can see a list of our upcoming monthly seminars on primary (K–5) teaching and learning and watch the recordings of previous seminars in this series.

The post Introducing data science concepts and skills to primary school learners appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/data-science-data-literacy-primary-school-scotland/feed/ 0
Supporting beginner programmers in primary school using TIPP-SEE https://www.raspberrypi.org/blog/teaching-programming-in-primary-school-tippsee/ https://www.raspberrypi.org/blog/teaching-programming-in-primary-school-tippsee/#comments Wed, 22 Feb 2023 09:27:39 +0000 https://www.raspberrypi.org/?p=83145 Every young learner needs a successful start to their learning journey in the primary computing classroom. One aspect of this for teachers is to introduce programming to their learners in a structured way. As computing education is introduced in more schools, the need for research-informed strategies and approaches to support beginner programmers is growing. Over…

The post Supporting beginner programmers in primary school using TIPP-SEE appeared first on Raspberry Pi Foundation.

]]>
Every young learner needs a successful start to their learning journey in the primary computing classroom. One aspect of this for teachers is to introduce programming to their learners in a structured way. As computing education is introduced in more schools, the need for research-informed strategies and approaches to support beginner programmers is growing. Over recent years, researchers have proposed various strategies to guide teachers and students, such as the block model, PRIMM, and, in the case of this month’s seminar, TIPP&SEE.

A young person smiles while using a laptop.
We need to give all learners a successful start in the primary computing classroom.

We are committed to make computing and creating with digital technologies accessible to all young people, including through our work with educators and researchers. In our current online research seminar series, we focus on computing education for primary-aged children (K–5, ages 5 to 11). In the series’ second seminar, we were delighted to welcome Dr Jean Salac, researcher in the Code & Cognition Lab at the University of Washington.

Dr Jean Salac
Dr Jean Salac

Jean’s work sits across computing education and human-computer interaction, with an emphasis on justice-focused computing for youth. She talked to the seminar attendees about her work on developing strategies to support primary school students learning to program in Scratch. Specifically, Jean described an approach called TIPP&SEE and how teachers can use it to guide their learners through programming activities.

What is TIPP&SEE?

TIPP&SEE is a metacognitive approach for programming in Scratch. The purpose of metacognitive strategies is to help students become more aware of their own learning processes.

The TIPP&SEE learning strategy is a sequence of steps named Title, Instructions, Purpose, Play, Sprites, Events, Explore.
The stages of the TIPP&SEE approach

TIPP&SEE scaffolds students as they learn from example Scratch projects: TIPP (Title, Instructions, Purpose, Play) is a scaffold to read and run a Scratch project, while SEE (Sprites, Events, Explore) is a scaffold to examine projects more deeply and begin to adapt them. 

Using, modifying and creating

TIPP&SEE is inspired by the work of Irene Lee and colleagues who proposed a progressive three-stage approach called Use-Modify-Create. Following that approach, learners move from reading pre-existing programs (“not mine”) to adapting and creating their own programs (“mine”) and gradually increase ownership of their learning.

A diagram of the Use-Create-Modify learning strategy for programming, which involves moving from exploring existing programs to writing your own.
TIPP&SEE builds on the Use-Modify-Create progression.

Proponents of scaffolded approaches like Use-Modify-Create argue that engaging learners in cycles of using existing programs (e.g. worked examples) before they move to adapting and creating new programs encourages ownership and agency in learning. TIPP&SEE builds on this model by providing additional scaffolding measures to support learners.

Impact of TIPP&SEE

Jean presented some promising results from her research on the use of TIPP&SEE in classrooms. In one study, fourth-grade learners (age 9 to 10) were randomly assigned to one of two groups: (i) Use-Modify-Create only (the control group) or (ii) Use-Modify-Create with TIPP&SEE. Jean found that, compared to learners in the control group, learners in the TIPP&SEE group:

  • Were more thorough, and completed more tasks
  • Wrote longer scripts during open-ended tasks
  • Used more learned blocks during open-ended tasks
A graph showing that learners using TIPP&SEE outperformed learners using only Use-Modify-Create in a research study.
The TIPP&SEE group performed better than the control group in assessments

In another study, Jean compared how learners in the TIPP&SEE and control groups performed on several cognitive tests. She found that, in the TIPP&SEE group, students with learning difficulties performed as well as students without learning difficulties. In other words, in the TIPP&SEE group the performance gap was much narrower than in the control group. In our seminar, Jean argued that this indicates the TIPP&SEE scaffolding provides much-needed support to diverse groups of students.

Using TIPP&SEE in the classroom

TIPP&SEE is a multi-step strategy where learners start by looking at the surface elements of a program, and then move on to examining the underlying code. In the TIPP phase, learners first read the title and instructions of a Scratch project, identify its purpose, and then play the project to see what it does.

The TIPP&SEE learning strategy is a sequence of steps named Title, Instructions, Purpose, Play, Sprites, Events, Explore.

In the second phase, SEE, learners look inside the Scratch project to click on sprites and predict what each script is doing. They then make changes to the Scratch code and see how the project’s output changes. By changing parameters, learners can observe which part of the output changes as a result and then reason how each block functions. This practice is called deliberate tinkering because it encourages learners to observe changes while executing programs multiple times with different parameters.

The TIPP&SEE learning strategy is a sequence of steps named Title, Instructions, Purpose, Play, Sprites, Events, Explore.

You can read more of Jean’s research on TIPP&SEE on her website. There’s also a video on how TIPP&SEE can be used, and free lesson resources based on TIPP&SEE are available in Elementary Computing for ALL and Scratch Encore.

Learning about learning in computing education

Jean’s talk highlighted the need for computing to be inclusive and to give equitable access to all learners. The field of computing education is still in its infancy, though our understanding of how young people learn about computing is growing. We ourselves work to deepen our understanding of how young people learn through computing and digital making experiences.

In our own research, we have been investigating similar teaching approaches for programming, including the use of the PRIMM approach in the UK, so we were very interested to learn about different approaches and country contexts. We are grateful to Dr Jean Salac for sharing her work with researchers and teachers alike. Watch the recording of Jean’s seminar to hear more:

Free support for teaching programming and more to primary school learners

If you are looking for more free resources to help you structure your computing lessons:

Join our next seminar

In the next seminar of our online series on primary computing, I will be presenting my research on integrated computing and literacy activities. Sign up now to join us for this session on Tues 7 March:

As always, the seminars will take place online on the first Tuesday of the month at 17:00–18:30 UK time. Hope to see you there!

The post Supporting beginner programmers in primary school using TIPP-SEE appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/teaching-programming-in-primary-school-tippsee/feed/ 1
Combining computing and maths to teach primary learners about variables https://www.raspberrypi.org/blog/variables-primary-school-computing-maths-education-seminar/ https://www.raspberrypi.org/blog/variables-primary-school-computing-maths-education-seminar/#respond Wed, 25 Jan 2023 12:17:44 +0000 https://www.raspberrypi.org/?p=82812 In our first seminar of 2023, we were delighted to welcome Dr Katie Rich and Carla Strickland. They spoke to us about teaching the programming construct of variables in Grade 3 and 4 (age 8 to 10). We are hearing from a diverse range of speakers in our current series of monthly online research seminars…

The post Combining computing and maths to teach primary learners about variables appeared first on Raspberry Pi Foundation.

]]>
In our first seminar of 2023, we were delighted to welcome Dr Katie Rich and Carla Strickland. They spoke to us about teaching the programming construct of variables in Grade 3 and 4 (age 8 to 10).

We are hearing from a diverse range of speakers in our current series of monthly online research seminars focused on primary (K-5) computing education. Many of them work closely with educators to translate research findings into classroom practice to make sure that all our younger learners have positive first experiences of learning computing. An important goal of their research is to impact the development of pedagogy, resources, and professional development to support educators to deliver computing concepts with confidence.

Variables in computing and mathematics

Dr Katie Rich (American Institutes of Research) and Carla Strickland (UChicago STEM Education) are both part of a team that worked on a research project called Everyday Computing, which aims to integrate computational thinking into primary mathematics lessons. A key part of the Everyday Computing project was to develop coherent learning resources across a number of school years. During the seminar, Katie and Carla presented on a study in the project that revolved around teaching variables in Grade 3 and 4 (age 8 to 10) by linking this computing concept to mathematical concepts such as area, perimeter, and fractions.

Young person using Scratch.

Variables are used in both mathematics and computing, but in significantly different ways. In mathematics, a variable, often represented by a single letter such as x or y, corresponds to a quantity that stays the same for a given problem. However, in computing, a variable is an identifier used to label data that may change as a computer program is executed. A variable is one of the programming constructs that can be used to generalise programs to make them work for a range of inputs. Katie highlighted that the research team was keen to explore the synergies and tensions that arise when curriculum subjects share terms, as is the case for ‘variable’. 

Defining a learning trajectory

At the start of the project, in order to be able to develop coherent learning resources across school years, the team reviewed research papers related to teaching the programming construct of variables. In the papers, they found a variety of learning goals that related to facts (what learners need to know) and skills (what learners need to be able to do). They grouped these learning goals and arranged the groups into ‘levels of thinking’, which were then mapped onto a learning trajectory to show progression pathways for learning.

Four of the five levels of thinking identified in the study: Data storer, data user, variable user, variable creator.
Four of the five levels of thinking identified in the study: Data Storer, Data User, Variable User, Variable Creator. Click to enlarge.

Learning materials about variables

Carla then shared three practical examples of learning resources their research team created that integrated the programming construct of variables into a maths curriculum. The three activities, described below, form part of a series of lessons called Action Fractions. You can read more about the series of lessons in this research paper.

Robot Boxes is an unplugged activity that is positioned at the Data User level of thinking. It relates to creating instructions for a fictional robot. Learners have to pay attention to different data the robot needs in order to draw a box, such as the length and width, and also to the value that the robot calculates as area of the box. The lesson uses boxes on paper as concrete representations of variables to which learners can physically add values.

""

Ambling Animals is set at the ‘Data Storer’ and ‘Variable Interpreter’ levels of thinking. It includes a Scratch project to help students to locate and compare fractions on number lines. During this lesson, find a variable that holds the value of the animal that represents the larger of two fractions.

""

Adding Fractions draws on facts and skills from the ‘Variable Interpreter’ and ‘Variable Implementer’ levels of thinking and also includes a Scratch project. The Scratch project visualises adding fractions with the same denominator on a number line. The lesson starts to explain why variables are so important in computer programs by demonstrating how using a variable can make code more efficient. 

Takeaways: Cross-curricular teaching, collaborative research

Teaching about the programming construct of variables can be challenging, as it requires young learners to understand abstract ideas. The research Katie and Carla presented shows how integrating these concepts into a mathematics curriculum is one way to highlight tangible uses of variables in everyday problems. The levels of thinking in the learning trajectory provide a structure helping teachers to support learners to develop their understanding and skills; the same levels of thinking could be used to introduce variables in other contexts and curricula.

A learner does physical computing in the primary school classroom.

Many primary teachers use cross-curricular learning to increase children’s engagement and highlight real-world examples. The seminar showed how important it is for teachers to pay attention to terms used across subjects, such as the word ‘variable’, and to explicitly explain a term’s different meanings. Katie and Carla shared a practical example of this when they suggested that computing teachers need to do more to stress the difference between equations such as xy = 45 in maths and assignment statements such as length = 45 in computing.

The Everyday Computing project resources were created by a team of researchers and educators who worked together to translate research findings into curriculum materials. This type of collaboration can be really valuable in driving a research agenda to directly improve learning outcomes for young people in classrooms. 

How can this research influence your classroom practice or other activities as an educator? Let us know your thoughts in the comments. We’ll be continuing to reflect on this question throughout the seminar series.

You can watch Katie’s and Carla’s full presentation here:

Join our seminar series on primary computing education

Our monthly seminar series on primary (K–5) teaching and learning is of interest to a global audience of educators, including those who want to understand the prior learning experiences of older learners.

We continue on Tuesday 7 February at 17.00 UK time, when we will hear from Dr Jean Salac, University of Washington. Jean will present her work in identifying inequities in elementary computing instruction and in developing a learning strategy, TIPP&SEE, to address these inequities. Sign up now, and we will send you a joining link for the session.

The post Combining computing and maths to teach primary learners about variables appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/variables-primary-school-computing-maths-education-seminar/feed/ 0
Spotlight on primary computing education in our 2023 seminar series https://www.raspberrypi.org/blog/primary-computing-education-research-seminar-series-2023/ Fri, 25 Nov 2022 10:59:54 +0000 https://www.raspberrypi.org/?p=82236 We are excited to announce our next free online seminars, running monthly from January 2023 and focusing on new research about primary school (K–5) teaching and learning of computing. Our seminars, having covered various topics in computing education over the last three years, will now offer you a close look at current questions and research…

The post Spotlight on primary computing education in our 2023 seminar series appeared first on Raspberry Pi Foundation.

]]>
We are excited to announce our next free online seminars, running monthly from January 2023 and focusing on new research about primary school (K–5) teaching and learning of computing.

Two children code on laptops while an adult supports them.

Our seminars, having covered various topics in computing education over the last three years, will now offer you a close look at current questions and research in primary computing education for 5- to 11-year-olds. Through this series we want to connect research and teaching practice, and further primary computing education across the globe.

Are these seminars for me?

Our upcoming seminars are for everyone interested in computing education, not just for primary school teachers — you are all cordially invited to join us. Previous seminars have been attended by a valuable mix of teachers, volunteers, tech industry professionals, and researchers, all keen to explore how computing education research can be put into practice.

Learner using Scratch on a laptop.

Whether you teach in a classroom, or support learners in a coding club, you will find out how our youngest learners develop their computing knowledge. You’ll also explore with us what this means for your learning context in practical terms.

What you can expect from the online seminars

Each seminar starts with a presenter explaining, in easy-to-understand terms, some recent research they have done. The presentation is followed by a discussion in smaller groups. We then regroup for a Q&A session with the presenter.

Attendees of our previous seminars have said:

“The seminar will be useful in my practice when our coding club starts.”

“I love this initiative, your choice of speakers has been fantastic. You are creating a very valuable CPD resource for Computer Science teachers and educators all over the world. Thank you. 🙏”

“Just wanted to say a huge thank you for organising this. It was brilliant to hear the presentation but also the input from other educators in the breakout room. I currently teach in a department of one, which can be quite lonely, so to join other educators was brilliant and a real encouragement.” 

Learn from specialists to benefit your own learners

Computer science has been taught in universities for many years, and only more recently has the subject been introduced in schools. That means there isn’t a lot of research about computing education for school-aged learners yet, and even less research about how young children of primary school age learn about computing. 

Young learners at computers in a classroom.

That’s why we are excited to invite you to learn with us as we hear from international primary computing research teams who share their knowledge in our online seminars:

  • Tuesday 10 January 2023: Kicking off our series are Dr Katie Rich and Carla Strickland from Chicago with a seminar on how they developed new instructional materials for teaching variables in primary school. They will specifically focus on how they combined research with classroom realities, and share experiences of using their new materials in class. 
  • Tuesday 7 February 2023: Dr Jean Salac from the University of Washington is particularly interested in identifying and addressing inequities in the computing classroom, and will speak about a new learning strategy that has been found to improve students’ understanding of computing concepts and to increase equal access to computing.
  • Tuesday 7 March 2023: Our own Dr Bobby Whyte from the Raspberry Pi Foundation will share practical examples of how primary computing can be integrated into literacy education. He will specifically look at storytelling elements within computing education and discuss the benefits of combining competency areas.
  • May 2023: Information coming soon
  • Tuesday 6 June 2023: In a collaborative seminar, Aim Unahalekhaka from Tufts University in Massachusetts will first present her research into how children learn coding through ScratchJr. Participants are encouraged to bring a tablet or device with ScratchJr to then look at practical project evaluations and teaching strategies that can help young learners create purposefully.
  • Tuesday 12 September 2023: Joining us from the University of Passau in Germany, Luisa Greifenstein will speak about how to give children appropriate feedback that encourages positive attitudes towards computing education. In particular, she will be looking at the effects of different feedback strategies and present a new Scratch tool that offers automated feedback.
  • October 2023: Information coming soon
  • Tuesday 7 November 2023: We are delighted to be joined by Dr Aman Yadav from Michigan State University who will focus on computational thinking and its value for primary schooling. In his seminar, he will not only discuss the unique opportunities for computational thinking in primary school but also discuss findings from a recent project that focused on teachers’ perspectives. 

Sign up now to attend the seminars

All our seminars start at 17:00 UK time (18:00 CET / 12:00 noon ET / 9:00 PT) and take place in an online format. Sign up now to receive a calendar invitation and the link to join on the day of each seminar.

We look forward to seeing you soon, and to discussing with you how we can apply research results to better support all our learners.

The post Spotlight on primary computing education in our 2023 seminar series appeared first on Raspberry Pi Foundation.

]]>