
Building tomorrow's Core Computational Curriculum

Integrating coding, maths and STEM ... for the AI age

Day job: build the best maths/computationtech »

Wolfram \leftrightarrow Computation | 33 years

- Mathematica since 1987 (Steve Jobs named it!)
- Enterprise consulting since 2007
- Wolfram|Alpha since 2008
- Wolfram Language since 2014
- Enterprise Al since 2015
- Enterprise Cloud since 2016
- Inventors of symbolic computing
- Inventors of computational notebooks
- Supplying knowledge to Siri, Alexa and Microsoft 365
- Pioneers of enterprise AI

Day job: Computation for Everyone \implies smart automation

Extra job: Everyone for Computation ⇒ computational thinking

The real world changed. How should education react?

Changed how? UbiquitousComputation

High-levelcomputation now applicable everywhere, eg:

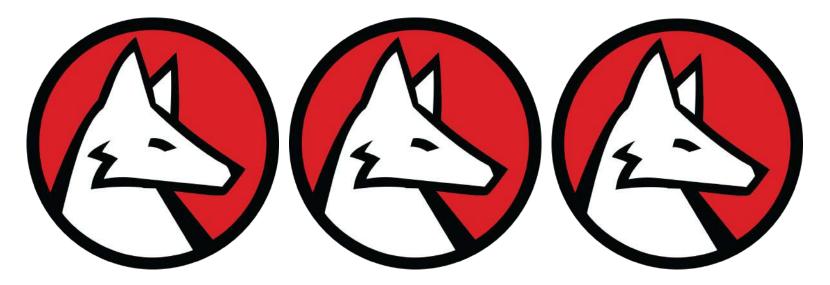
Always (Maths) Physics Accounting Newlyconceived Programming Data Science Social Media Finance Newto computation Biosciences Historyand archeology Medicine(includingpandemicresponse) Sports Agriculture Marketingand business

Example: Agriculture

📥 sheep in new zealand v. people in UK

Example: Linguistic Programming

E World War 2 battles


Example: Biology

GenomeLookup["

Example: Image detection

Stop	Image contents	FacialGender	FacialAge	FacialExpression
------	----------------	--------------	-----------	------------------

Key technology:Wolfram Language

ProgramminglanguageAND SupersetcomputationrepresentationAND Humantechnicalcommunicationlanguage Dynamic[CurrentImage[ImageSize → 700]]

Key Computational subfields... Coding Data Science ...but not whole picture

Core human skill: ComputationalThinking

Manifested by maths education...?

Maths/codingeducation

Achieving data literacy, data science? Promoting logical thought? Optimising economic results/jobs?

... Developingcomputationalthinking?

Maths education crisis: 80% wrong subject?

Key difference: Computers

"In real-worldmath, computers do almost all the calculating; in educationalmath, people do almost all the calculating"

Everyone for "maths"/CT?

Key reasons for the "right maths":1. Technical jobs2. Everydayliving3. Logical mind training

Value-add Subsistence Survival

CT/maths process?

1. **DEFINE** QUESTIONS

2. **ABSTRACT** TO COMPUTABLE FORM (real world → abstract)

3. **COMPUTE** ANSWERS

4. INTERPRET RESULTS (abstract → real world)

Use computers for...

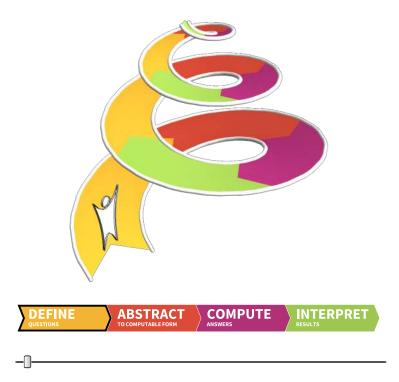
1. **DEFINE** QUESTIONS

2. ABSTRACT TO COMPUTABLE FORM (real world → abstract)

3. **COMPUTE** ANSWERS

4. INTERPRET RESULTS (abstract → real world)

Use humans for...


DEFINE QUESTIONS

2. **ABSTRACT** TO COMPUTABLE FORM (real world → abstract)

3. **COMPUTE** ANSWERS

4. INTERPRET RESULTS (abstract → real world)

CT/Maths:problem-solvingprocess

Solve[
$$\{x + 2 = 2y, y - x = 5\}, \{x, y\}$$
]

Today's maths education headings [About hand-calculating]

Similartriangles Calculatethislongdivision Completingthesquare Invertingmatrices SimplifyingSurdsandRecurringDecimals Solvingsimultaneouœquations Thechainrule

Tomorrow's CT/math headings [Contextualproblemsneedingwholeprocess]

What's the perfect password for your login? Am I normal? Should I insure? How do I design controls for my game? Are our incentives working? How do we evaluate our social media effective nes s? Is a fraud occurring? How much can you compress photos, video or music before you notice? By how many levels of friends are we separated on Facebook? What's a beautiful shape?

Remove the computer... \Rightarrow remove the context

Remove the computer... ⇒ different computational toolset ⇒ different subject

Reorder for conceptual not computational complexity

Eg. 3D geometryfirst Machine-Learningfor Elementary Calculusfor 10-year-olds

Example problem: can I spot a cheat?

Enter 200 coin flips

Computer's test results

Count: 196 data points

Modernalgorithmicthinking/datascienceideas;onlypossibleifcomputer-based

New Computational Curriculum What to deliver?

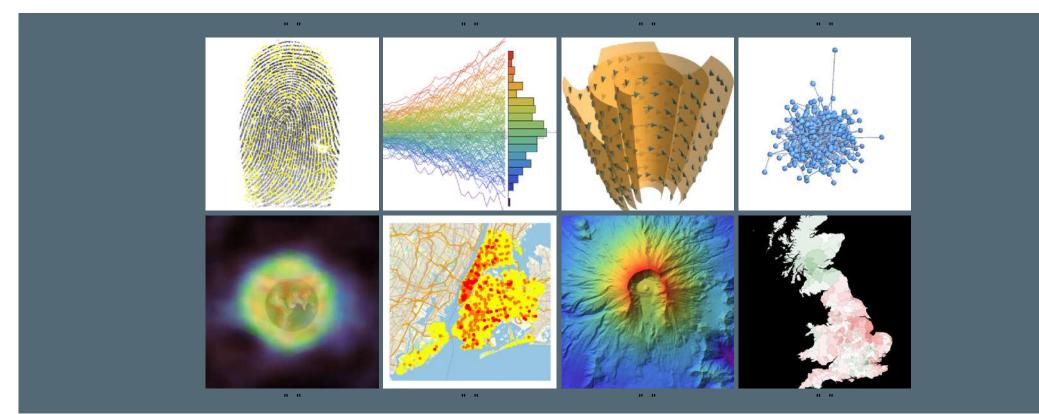
Actual learning materials for teacher and student... ...to map the curriculum

Directed to modern outcomes

Tethered to representative assessments

New Computational Curriculum Deliverables:

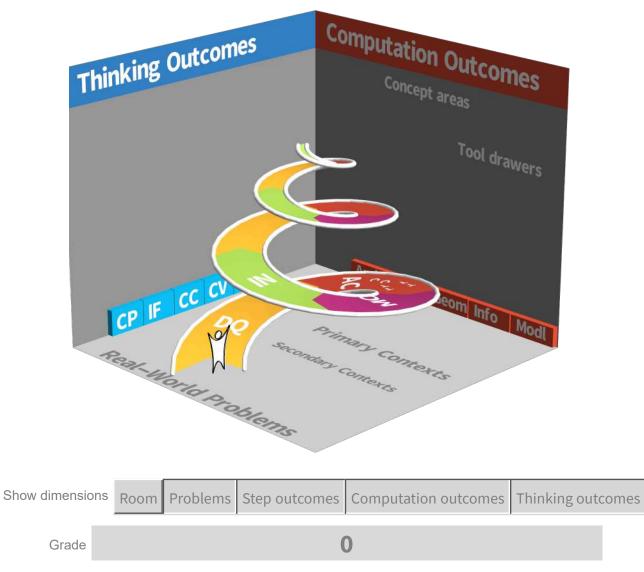
Directed learning (Modules) Guided learning (Projects) "Documentation" (Primers) New Outcomes Curriculumspecing process New assessmentstypes


Since 2010:

"Build a core computational curriculum that assumes computers exist"

Example module: How fast can I cycle...?

Example projects: (Independentproblem solving)



New Computational Curriculum Right Outcomes » Right assessments

Outcomes: must engender Al-age "Thinking"

Abstraction of thinking techniques Hybrid human-Almanagement Intertwining creativity and process

Outcomes, contexts, process, grades

Student

Specification: dimensions of outcomes

		Grades	1	2	3	4	5	6	7	8
CP		CONFIDENCE TO TACKLE NEW PROBLEMS								
	CPr	Recalling the four-step process	Desc	\rightarrow	Desc	\rightarrow	Desc	Desc	\rightarrow	\rightarrow
	CPa	Applying the four-step process	Desc	Desc	\rightarrow	Desc	\rightarrow	Desc	\rightarrow	Desc
	CPm	Managing the process of breaking large problems into small problems	Desc	Desc	→	. →	Desc	\rightarrow	Desc	Desc
	CPt	Applying existing tools in new contexts	Desc	. →	0	Desc	→	Desc	. →	Desc
	CPk	Knowing how to teach yourself new tools	Desc	. →	Desc	. →	. →	Desc	Desc	. →
	CPi	Interpreting others' work		Desc	\rightarrow) →		Desc	Desc	. →
IF	1	INSTINCTIVE FEEL FOR COMPUTATIONAL THINKING								
	IFu	Identify the usefulness of computational thinking for a given real-world problem	Desc	Desc	_→	Desc	→	Desc	_→	Des
	IFp	Assessing the plausibility of computational thinking being useful		Desc			Desc	_→	Desc	Des
	IFf	Identifying fallacies and misuse of computation	Desc	\rightarrow		Desc		Desc		Des
	IFr	Having a feel for how reliable a model will be	Desc	\rightarrow	Desc			Desc	Desc	
	IFe	Estimating a solution of the defined problem	Desc	Desc				Desc	Desc	
L CV		CRITIQUING AND VERIFYING		Desc			· · · · ·	Desc	Desc	· · · · ·
	CVa	Quantifying the validity and impact of the assumptions made		Desc	→	Desc	→	Desc	→	→
	CVI	Quantifying the validity and impact of tools and concepts chosen	Desc	→	Desc	Desc		→	Desc	Des
	CVc	Listing possible sources of error from computation failures or limitations	Desc	Desc	Desc	Desc		Desc	Desc	Des
				÷		÷	D	Desc →		
	CVm	Listing possible sources of error from concepts' limitations		Desc	Desc	. →	Desc			
	CVe	Identifying systematic and random errors	-	Desc	Desc	_ →		Desc	_ →	. →
	CVt	Being able to corroborate your results	Desc	_ →	_ →	Desc	-	Desc	Desc	-
	CVr	Qualifying reliability of sources		Desc	Desc	. →		Desc	→	
	CVd	Deciding if the results are sufficient to move to the next step, including whether to	Desc	_→	_→	Desc	_→	Desc	Desc	→
)		abandon								
L GN		GENERALISING A MODEL/THEORY/APPROACH								
	GMi	Identify similarities and differences between different situations for the purposes	Desc	Desc	→	_→	Desc	→	_→	Des
		of abstraction								
	GMv	Taking constants from initial model and making them variable parameters			Desc	→	Desc	Desc		Des
	GMw	Being able to draw wider conclusions about the behaviours of a type of problem		Desc	Desc	. →		Desc	. →	Des
GM	GMg	Implementing a generalised model as a robust program	Desc			Desc		Desc	Desc	\rightarrow
CC		COMMUNICATING AND COLLABORATING								
	CCv	Distilling or explaining ideas visually		Desc	Desc			Desc		
	ССр	Distilling or explaining ideas verbally	Desc			Desc		Desc	Desc	\rightarrow
	CCd	Distilling or explaining ideas through written description		Desc	Desc	\rightarrow	Desc	\rightarrow	\rightarrow	\rightarrow
	CCc	Using vocabulary, symbols, diagrams, code accurately and appropriately for your		Desc	Desc	\rightarrow	\rightarrow	Desc	\rightarrow	\rightarrow
	ССЬ	Choosing the best form of communication for a given purpose	Desc	_→	Desc	→	→	→	_→	\rightarrow
	CCr	Structuring and producing a presentation or report	Desc	_→	→	Desc	Desc	Desc	_→	Des
	CCg	Being able to work effectively in a group to solve a problem	Desc	→	Desc	\rightarrow	\rightarrow	Desc	\rightarrow	Des
	CCF	Deciding which facts support or hinder an argument		Desc	\rightarrow	→	→	Desc	→	Des
	CCi	Understanding and critiquing ideas presented to you		Desc	\rightarrow	→	→	Desc	Desc	→
	CCa	Using techniques for questioning, interrogation, cross-examining	Desc	→	Desc	Desc	→	Desc	Desc	\rightarrow
DO		DEFINING THE QUESTION								
	DOf	Filtering the relevant information from available information		Desc	Desc	_→	Desc		-	_
		Identifying missing information to be found or calculated		Desc	Desc		→ Desc	Desc		_
		Stating precise questions to tackle	Desc	Dest	Desc →	Desc	Desc	Desc	_	Des
	······································	······································	Desc		Desc	Desc →	Desc →	Desc	-	Des
10		Identifying, stating and explaining assumptions being made	Desc	_	Desc	_		Desc	_	Des
AC		ABSTRACTING TO COMPUTABLE FORM		D	D		Dee			
	ACp	Identifying the purpose of the abstraction		Desc	Desc	→	Desc	→ 	→	→
	ACd	Creating diagrams to structure knowledge	-	Desc	Desc			Desc		
	ACc	Identifying relevant concepts and their relationship	Desc	→	Desc			Desc	→	Des
	ACr	Understanding the relative merits of the concepts available	Desc		→	Desc	Desc	Desc		Des
	ACa	Being able to present alternative abstractions	Desc	! →	Desc	: →	\rightarrow	Desc	! →	-

		A				ç						
С		CONCEPT - C1 C2 C3 C4										
	C1	Being able to describe the concept										
	C2	Recognising whether the concept applies										
	C3	Knowing which tools are relevant to the concept										
	C4	Having intuition for the relative merits of the concept										
S	Exam	ples										
Ö		2D and 3D shapes	C1 C2	C3 C4	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow		
2 -		Charts and information visualisation		C1	C2 C3			C4		\rightarrow		
		Equation solving	C1	C2	C3	\rightarrow	C4	\rightarrow	\rightarrow	\rightarrow		
		Colours	C1	C2	C3 C4	\rightarrow	\rightarrow	→	\rightarrow	→		
От		TOOLS-Tb Ti Ta Tc Tr										
	ть	Having intuition about the tool's behaviour		:	:	:	:	:	:			
3	Ti	Composing appropriate and accurate input for the tool										
5	Та	Applying the tool or demonstrating experience of its application										
	Tc	Being aware of comparable tools										
<u>ک</u>	Tr	Understanding the relative merits of different tools for use in the context										
	Exam	•										
0		Plus	TiTa	Tb Tc					→	→		
		Polygon		TiTa	Tb Tc	Tr			-	-		
5		PieChart3D			TiTa	Tb Tc	Tr					
		GeometricTransformation			1119	Ti	Та	ТЬ		÷		
мс		MANAGING COMPUTATIONS					10	10				
	MC1	Choosing an appropriate technology	Desc	→	Desc	_→	_	→	_	→		
		Being able to interpret documentation	Desc	́	→	Desc	Desc	Desc		Desc		
		Assessing the feasibility of getting a useful answer	Desc		Desc			Desc	_	Desc		
		Having intuition about whether the output is appropriate for the context	Desc	Desc	→ Desc			Desc		Desc		
		Combining tools to produce results required	Desc	Desc			Desc	Desc →		Desc		
		Isolating the cause(s) of operational problems	Desc	Desc	-	-	Desc	-	-	Desc		
		· · · · · · · · · · · · · · · · · · ·	Desc	Desc			Desc					
	MC7	Resolving operational problems		Desc	Desc Desc		Desc →	Desc Desc		Desc Desc		
151	MC8	Optimising both speed of obtaining results and reusability of computation INTERPRETING		Desc	Desc			Desc		Desc		
IN	1814			Dees	Dees			Dees				
	IN1	Reading common and relevant representations and notations	-	Desc	Desc		→	Desc		→		
	IN2	Making statements about the output in the context of the original problem	Desc	→	Desc	_→	_→	_→				
	IN3	Identifying and relating features of the output to real-world meaning	Desc	-	→ 	Desc →	Desc	Desc		Desc		
	IN4	Identifying interesting features in results	Desc	→ 	Desc →	-	→ 、	Desc		Desc		
_	IN5	Inferring a hypothesis beyond the current investigation		Desc				Desc		Desc		
Cate	gory	Primary contexts										
		Biotechnology and Healthcare: Medicine	Desc	Desc	Desc	→	Desc	Desc	→	Desc		
3		Biotechnology and Healthcare: Fitness	Desc	→	Desc	Desc			Desc	Desc		
2		Finance and Economics: Banking		Desc		Desc		Desc		→		
<u>n</u>		Finance and Economics: Insurance		Desc	Desc		Desc			→		
5		Data Science and Business: Statistics		Desc	Desc	\rightarrow	\rightarrow	Desc	\rightarrow	\rightarrow		
		Secondary contexts										
5		Engineering: Architecture		Desc	Desc		_→	Desc		\rightarrow		
SIXADUO		Biotechnology and Healthcare: Bioinformatics	Desc	_→	_→	Desc		Desc	Desc	\rightarrow		
J		Finance and Economics: Investing		Desc	Desc	\rightarrow	Desc	_→	\rightarrow	\rightarrow		
		Finance and Economics: Economics		Desc	Desc	\rightarrow	\rightarrow	Desc	\rightarrow	\rightarrow		
		Science: Astronomy	Desc	\rightarrow	Desc	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow		

Today's maths trains your mind

We're already doing a new computer science subject

Get the basics first

You need to know how the computer works first

Today's maths helps with real–world computation

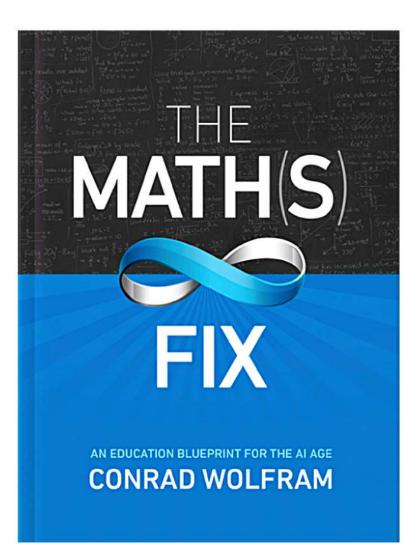
We're already doing maths with computers

Objections

Children have too much screen time

> Computers dumb maths down

Hand–calculating teaches understanding


You need evidence before you make this change

It's too risky to make this change

Don't confuse major effects of AI: What we need to learn [Subject] How we optimise learning it [Pedagogy]

ie. AI drives need for change, also provides tools

First detailed proposal for fundamental change

Part I: The Problem

- 1 | Maths v. Maths
- 2 | Why Should Everyone Learn Maths?
- 3 | Maths and Computation in Today's World
- 4 | The 4-Step Maths/Computational Thinking Process
- 5 | Hand Calculating: Not the Essence of Maths

Part II: The Fix

- 6 | 'Thinking' Outcomes
- 7 | Defining the Core Computational Subject
- 8 | New Subject, New Pedagogy?
- 9 What to Deliver? How to Build It?

Part III: Achieving Change

- 10 | Objections to Computer-Based Core Computational Education
- 11 | Roadmap for Change
- 12 | Is Computation for Everything?
- 13 | What's Surprised Me on This Journey so Far
- 14 | Call to Action

New Computational Curriculum Achieve what?

Achieve:

First rate human problem solvers, not third-rate human computers

ie. working a level up from the machines, not competing with what they do best...

Optimisinghuman-computer hybrid decision-making Achieve:

Better enfranchisement across society

Avoiding "Computational "divide Achieving "Computational Knowledge Economy"

Needs Revolution not just Evolution

(80% not 10% problem)

Join the C⁵

Campaign for Core Computational Curriculum Change

Human role	Stand on the power of computers, don't compete with them. (Make first-rate human problem-solvers, not third-rate human calculators.)	
Mainstream	Establish a mainstream, core computational thinking curriculum for all.	
	(Not for its own sake but to power problem-solving across all subjects.)	
Realistic	Use the real world as your guide for what to learn: concepts, strategies and toolsets.	TEEZ
	(Computers opened up real life to computation; education should too.)	200123
Toolset	Prioritise breadth of computational applications over the details of their implementation.	
Toolset	(Don't exclude what you can't hand calculate or can't explain about the computer's calculations.)	
Urgency	Implement Computational Thinking education— society's key preparation for the AI age.	
0	(The cost of delay is mounting year on year.)	

Compare:

Mass Literacy (from 1800s) Mass Computational Literacy (2020s -)

Enter a New Era of ComputationalEnfranchisement

conradwolfram.com mathsfix.org wolfram.com wolframalpha.com

UK: can we lead?

Topic 1: Tweak existing curricula and qualifications? Add something new as an option? Start over and do it properly?

> Topic 2: What age/stageto start?

> > Topic 3:

Overcominginertiaof the system: assessment, training, hardware, time: what to loose to make room?

Topic 4:

Whereare the teachers currently? Science?Maths?Computing?Technology?Business?Humanities?