

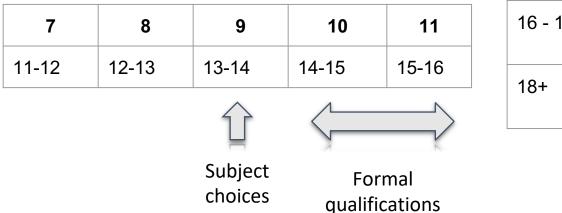
katharine@raspberrypi.org @IAmKatharineC #rpfseminars

Gender Balance in Computing: what the research says

Katharine Childs July 2020

Overview

- Context
- Metaphors
- Key themes from the literature
- Deep dive into some of the themes
- Where next?


Context: English education system

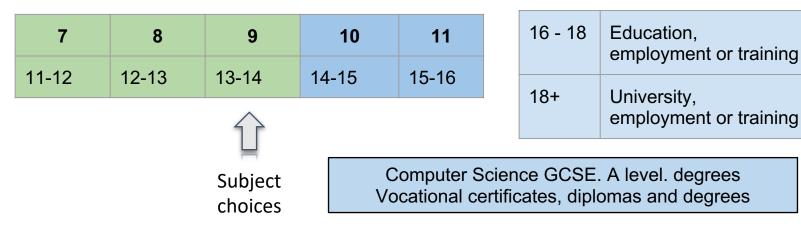
Primary phase

R	1	2	3	4	5	6	End of Key
4-5	5-6	6-7	7-8	8-9	9-10	10-11	Stage SATs

Secondary phase

Post 16

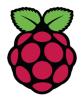
16 - 18	Education, employment or training
18+	University, employment or training



Context: English education system

Secondary phase

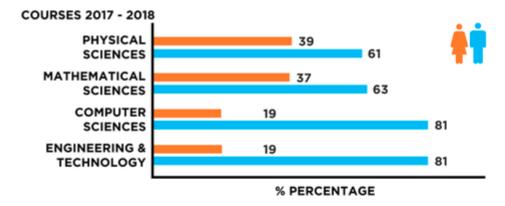
Post 16



Context: Gender imbalance

Computer Science	2018	2019
GCSE	20.2%	21.4%
A level	11.8%	13.2%

Source: jcq.org.uk


Girls are not currently well represented in computing at GCSE and A-level in England

Context: Gender imbalance

Girls are not currently well represented in computing in undergraduate degrees in the UK

Subject breakdown - Female students

Source: Stemwomen.org.uk

Metaphors in the literature

• The 'incredible shrinking pipeline' (Camp, 2002)

• Unlocking the clubhouse (Margolis and Fisher, 2002)

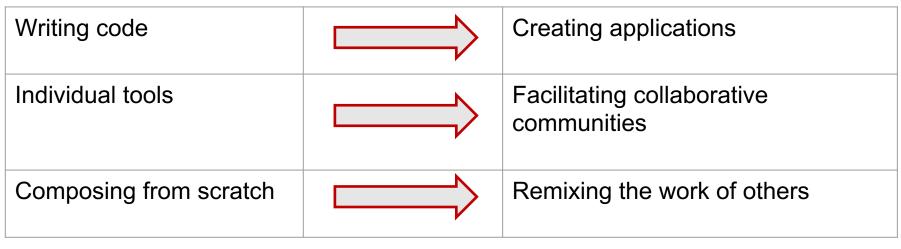
• The social turn (Kafai and Burke, 2013)

Key questions

- 1. What are the barriers which prevent girls' participation in computing?
- 2. Which interventions can support girls to choose computing qualifications and careers?

Why should schools teach computing?

Attainment in computing

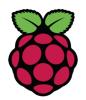

A high-quality computing education equips pupils to use computational thinking and creativity to understand and change the world. (DfE, 2013)

 GCSE Computer Science – strong attainment but underperformance compared to boys (Kemp, Wong and Berry, 2019)

The social turn in programming

Kafai and Burke, 2013

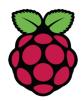
Collaborative teaching approaches in STEM subjects have been shown to improve self-efficacy and achievement in girls


(Werner and Denning, 2009; Lorenzo et al 2006)

Where is computing relevant in society?

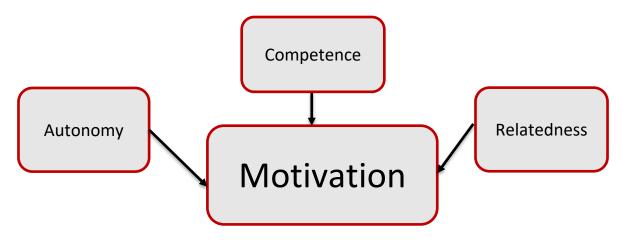
Real-world contexts

- Computing can seem like a very theoretical subject
- Bubble sort algorithm
 - o theory mechanics and efficiency of how the sort works
 - o application the usefulness of the data it is sorting
- Example data sets
 - Playing card values, ages, size of sports balls, heights
 - Number of fish eaten by dolphins in an aquarium


Real-world contexts

- Context is often very important for female students (Margolis and Fisher, 2002, Lyons 2006)
 - \circ Realistic data sets
 - Choice of contexts
 - Agency to make own choice

Source: Pixabay

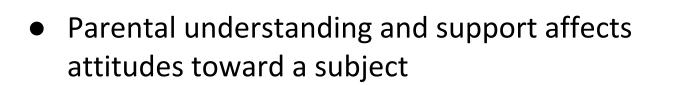

• Female students had more positive attitudes towards a subject they can link to real world problems (Guzdial and Elliot, 2006)

Who is computing for?

Self-determination theory

- Relatedness is the most important of these three conditions for girls' motivation to study computing.
- A sense of belonging is a significant predictor of girls' motivation (Mishkin, 2019)

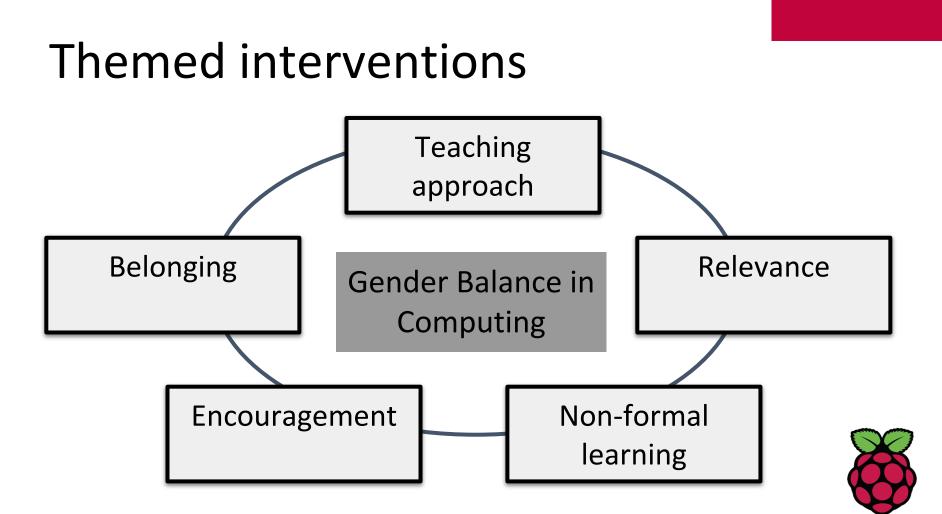
Representation & role models


- Two interpretations of 'role models'
 - 1. Behaviours, attitudes and emotional reactions
 - 2. Aspirations and achievements
- Links to self-esteem (Wohlford, Lokman and Barry, 2004)

Parental support

- Denner (2011)
 - o emotional support
 - more support = higher perceived relevance

Non-formal learning


- Coding clubs have better representation of girls
 - o 33% of attendees at CoderDojos (2017)
 - o 40% of children at Code Clubs (2018)
- There is potential to connect non-formal learning experiences to formal learning choices by showing girls how their experiences can contribute towards their goals

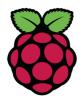
Barriers and interventions

	Barrier	Intervention
Teaching approach	Only individual learning	Collaborative learning
Relevance	Focus on writing code and theory	Focus on solving real-world problems
Belonging	Lack of female representation in computing	Use role models to show representation
Encouragement	Unconscious bias in parent and teacher advice	Support to encourage girls into computing
Non-formal learning	No clear link to formal learning	Make links to formal learning explicit

Spread the word

Information for schools: <u>https://teachcomputing.org/gender-balance</u>

Newsletter sign-up: ncce.io/gbicgenreg



Source: clipartmax.com

Emerging themes

- Inclusivity
 - O Non-binary lens for gender approaches to explore statistically significantly differences (Pournaghshband and Medel, 2020)
- Intersectionality
 - Race, socioeconomic status, ability

(Kemp, Wong and Berry, 2019, British Science Association, 2020)

Thank you

With grateful acknowledgement for work and support from colleagues across our partner organisations

Discussion ideas

- Teaching approaches
- Role models
- Real-world computing
- Something else?

References (1)

Black, J., Curzon, P., Myketiak, C., & McOwan, P. W. (2011). A Study in Engaging Female Students in Computer Science Using Role Models. *ITiCSE'11 - Proceedings of the 16th Annual Conference on Innovation and Technology in Computer Science*, 63–67. Darmstadt, Germany: ACM.

British Science Association (2020) Inquiry on equity into STEM education. Available at; https://www.britishscienceassociation.org/appg

Camp, T. (2002). The incredible shrinking pipeline. ACM SIGCSE Bulletin, 34(2), 129-134.

Denner, J. (2011). What Predicts Middle School Girls' Interest in Computing? *International Journal of Gender, Science and Technology*, 3(1), 53–69. Retrieved from http://genderandset.open.ac.uk

Guzdial, M., & Tew, A. E. (2006). Imagineering inauthentic legitimate peripheral participation: An instructional design approach for motivating computing education. *ICER 2006 - Proceedings of the 2nd International Computing Education Research Workshop*, 2006, 51–58. https://doi.org/10.1145/1151588.1151597

Kafai, Y. B., & Burke, Q. (2013, March). The social turn in K-12 programming: moving from computational thinking to computational participation. In *Proceeding of the 44th ACM technical symposium on computer science education* (pp. 603-608).

Kemp, P. E. J., Wong, B., & Berry, M. G. (2019). Female Performance and Participation in Computer Science. *ACM Transactions on Computing Education*, 20(1), 1–28. https://doi.org/10.1145/3366016

Lang, C., Craig, A., Fisher, J., & Forgasz, H. (2010). Creating Digital Divas – Scaffolding Perception Change Through Secondary School and University Alliances. *ITiCSE 2010*, 38–42. ACM.

References (2)

Lorenzo, M., Crouch, C. H., & Mazur, E. (2006). Reducing the gender gap in the physics classroom. *American Journal of Physics*, 74(2), 118–122. <u>https://</u>doi.org/10.1119/1.2162549

Lyons, T. (2006). Different countries, same science classes: Students' experiences of school science in their own words. *International Journal of Science Education*, 28(6), 591–613. https://doi.org/10.1080/09500690500339621

Margolis, J., & Fisher, A. (2002). Unlocking the clubhouse: Women in computing. MIT press.

Mishkin, A. (2019). Applying self-determination theory towards motivating young women in computer science. SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 1025–1031. https://doi.org/10.1145/3287324.3287389

Pournaghshband, V., & Medel, P. (2020, June). Promoting Diversity-Inclusive Computer Science Pedagogies: A Multidimensional Perspective. In *Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education* (pp. 219-224).

Townsend, G. C. (2002). People Who Make a Difference : Mentors and Role Models. ACM SIG Computer Science Education Bulletin, 34(2), 57–61. Retrieved from http://www.well.com/

Werner, L., & Denning, J. (2009). Pair programming in middle school: What does it look like? *Journal of Research on Technology in Education*, 42(1), 29–49. <u>https://doi.org/</u>10.1080/15391523.2009.10782540

Wohlford, K., Lochman, J., & Barry, T. (2004). The Relation Between Chosen Role Models and the Self-Esteem of Men and Women. Journal of Business Ethics, 51(1), 31–39. https://doi.org/10.1023/B

Differences between studies

	Black et al (2011)	Townsend (1996)	Lang et al (2010)	
Context	Secondary schools, UK, booklet telling stories of women in tech (n=?)	Middle school girls, US, video taped college students (n=24)	Digital Divas program. secondary schools, Australia (n=24)	
Modelling	Achievement	Behaviours, attitudes, achievements	Behaviour, attitudes	
Proximity	In a printed booklet	On videotape	In the classroom as additional facilitators	
Plurality	Individuals	Individuals	Individuals	
Outcomes	Measured by distribution figures and qualitative teacher feedback	Attitude surveys (treatment vs control) immediately and after four months	Qualitative feedback from the students, teacher and university students	